The inverse gamma distributed texture is important for modeling compound-Gaussian clutter (e.g. for sea reflections), due to the simplicity of estimating its parameters. We develop maximum-likelihood (ML) and method of fractional moments (MoFM) estimates to find the parameters of this distribution. We compute the Cramer-Rao bounds (CRBs) on the estimate variances and present numerical examples. We also show examples demonstrating the applicability of our methods to real lake-clutter data. Our results illustrate that, as expected, the ML estimates are asymptotically efficient, and also that the real lake-clutter data can be very well modeled by the inverse gamma distributed texture compound-Gaussian model.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Maximum likelihood estimation for compound-gaussian clutter with inverse gamma texture


    Beteiligte:
    Balleri, Allessio (Autor:in) / Nehorai, Arye (Autor:in) / Wang, Jian (Autor:in)


    Erscheinungsdatum :

    01.04.2007


    Format / Umfang :

    963091 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch