Constrained trajectory optimization has been a critical component in the development of advanced guidance and control systems. An improperly planned reference trajectory can be a main cause of poor online control performance. Due to the existence of various mission-related constraints, the feasible solution space of a trajectory optimization model may be restricted to a relatively narrow corridor, thereby easily resulting in local minimum or infeasible solution detection. In this article, we are interested in making an attempt to handle the constrained trajectory design problem using a biased particle swarm optimization approach. The proposed approach reformulates the original problem to an unconstrained multicriterion version by introducing an additional normalized objective reflecting the total amount of constraint violation. Besides, to enhance the progress during the evolutionary process, the algorithm is equipped with a local exploration operation, a novel $\varepsilon$-bias selection method, and an evolution RS. Numerical simulation experiments, obtained from a constrained atmospheric entry trajectory optimization example, are provided to verify the effectiveness of the proposed optimization strategy. Main advantages associated with the proposed method are also highlighted by executing a number of comparative case studies.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Solving Constrained Trajectory Planning Problems Using Biased Particle Swarm Optimization


    Beteiligte:
    Chai, Runqi (Autor:in) / Tsourdos, Antonios (Autor:in) / Savvaris, Al (Autor:in) / Chai, Senchun (Autor:in) / Xia, Yuanqing (Autor:in)


    Erscheinungsdatum :

    2021-06-01


    Format / Umfang :

    3295461 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    UAV Swarm Trajectory Planning Based on a Novel Particle Swarm Optimization

    Luo, Jing / Liu, Jie / Liang, QianChao | Springer Verlag | 2022


    Trajectory Planning for a Pseudo Omnidirectional Vehicle using Particle Swarm Optimization

    Schorner, Philip / Doll, Jens / Galm, Maximilian et al. | IEEE | 2019


    Receding-Horizon Trajectory Planning for Multiple UAVs Using Particle Swarm Optimization

    Vijayakumari, Dileep M. / Kim, Seungkeun / Suk, Jinyoung et al. | AIAA | 2019