In automatic target recognition we often face a problem in having to train a large neural network upon a very limited data set. This paper presents methods designed to analyze trained networks. The methods allow us to investigate how the network makes its decisions as well as its generalization properties. The methods interact with each other and are intended to be used as a complete set. They use techniques of sensitivity analysis, linear algebra, and rule extraction. They have been coded in Matlab as a toolbox and tested on a large number of real networks.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Evaluation of neural networks for automatic target recognition


    Beteiligte:
    Przytula, K.W. (Autor:in) / Thompson, D. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.01.1997


    Format / Umfang :

    1249931 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Evaluation of Neural Networks for Automatic Target Recognition

    Wojtek Przytula, K. / Thompson, D. / IEEE; Aerospace and Electronics Systems Society | British Library Conference Proceedings | 1997


    Neural networks for automatic target recognition

    Chaudhuri, S.P. / Sequeira, C. | Tema Archiv | 1990


    Automatic target recognition for naval traffic control using neural networks

    Pasquariello, G. / Satalino, G. / La Forgia, V. et al. | British Library Online Contents | 1998



    Automatic target recognition using neural networks (invited Paper) [3466-37]

    Wang, L.-C. / Der, S. Z. / Nasrabadi, N. M. et al. | British Library Conference Proceedings | 1998