Recently, the use of micro-Doppler radar signatures for target classification has become an area of focus, in particular for the case of dynamic targets where many components are interacting over time. To fully exploit the signature information, individual scattering centers may be automatically extracted and associated over the full target observation. The availability of ultrafine radar range resolution, or micro-range resolution, aids this process immensely. This paper proposes one such algorithm. The proposed method uses the well-known nonlinear least squares (NLS) and expectation-maximization (EM) algorithms. As shown, leveraging fine range and Doppler resolution allows human signatures to be decomposed into the responses of constituent body parts. The algorithm is experimentally validated against a number of measured human-radar data sets.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Micro-Range/Micro-Doppler Decomposition of Human Radar Signatures


    Beteiligte:
    Fogle, O. R. (Autor:in) / Rigling, B. D. (Autor:in)


    Erscheinungsdatum :

    01.10.2012


    Format / Umfang :

    12548766 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Radar micro-Doppler signatures of small UAVs

    Yu, Jie / Liu, Yulan / Hou, Haohao | SPIE | 2020


    Open-Scenario-Oriented Human Gait Recognition Using Radar Micro-Doppler Signatures

    Yang, Yang / Zhao, Dongxu / Yang, Xiaoyi et al. | IEEE | 2024


    Experimental Observations of Micro-Doppler Signatures With Passive Radar

    Garry, Joseph Landon / Smith, Graeme E. | IEEE | 2019


    Analysis of Micro-Doppler Radar Signatures from Experimental Helicopter and Human Data

    Thayaparan, T. / Abrol, S. / Chen, V. C. et al. | British Library Conference Proceedings | 2004


    Exploring Radar Micro-Doppler Signatures for Recognition of Drone Types

    Jun Yan / Huiping Hu / Jiangkun Gong et al. | DOAJ | 2023

    Freier Zugriff