Sensing data gathering and dissemination is one of the most challenging tasks in smart city construction, and vehicles moving around a city have been widely considered as a good candidate to deliver data efficiently and economically. Hence, this paper proposes a deep recurrent neural network-based algorithm to predict vehicle mobility and facilitate vehicle-based sensing data delivery. Extensive evaluations have been conducted by using a large-scale taxi mobility dataset that is obtained from a smart city testbed deployed in Tokyo, Japan. The results have validated that, compared with the most state-of-art algorithms, our proposal can improve the F1-Score of vehicle mobility prediction by a range of 18.3% ~24.6%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Applying Deep Recurrent Neural Network to Predict Vehicle Mobility


    Beteiligte:
    Liu, Wei (Autor:in) / Shoji, Yozo (Autor:in)


    Erscheinungsdatum :

    01.12.2018


    Format / Umfang :

    510823 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Predict ATFCM weather regulations using a time-distributed Recurrent Neural Network

    Mas-Pujol, Sergi / Salami, Esther / Pastor, Enric | IEEE | 2021


    A DEEP TRANSPORTATION MODEL TO PREDICT THE HUMAN MOBILITY FOR AUTONOMOUS VEHICLE

    KASHEM SAAD BIN ABUL / ARULARASU S / GURUSAMY M et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Vehicle classification using a recurrent neural network (RNN)

    SALTI SAMUELE / SAMBO FRANCESCO / TACCARI LEONARDO et al. | Europäisches Patentamt | 2019

    Freier Zugriff


    Multivariate Time Series Analysis Using Recurrent Neural Network to Predict Bike-Sharing Demand

    Boonjubut, Kanokporn / Hasegawa, Hiroshi | Springer Verlag | 2020