In this paper we develop a scenario-based Distributed Model Predictive Control (DMPC) approach for large-scale freeway networks. The uncertainties in a large-scale freeway network are categorized into global uncertainties for the overall network and local uncertainties for subnetworks. A reduced scenario tree is proposed, consisting of global scenarios and a reduced local scenario tree. For handling uncertainties in the scenario-based DMPC problem, a min-max setting is considered. A case study is implemented for investigating the scenario-based DMPC approach, and the results show that in the presence of uncertainties it is effective in improving the control performance with the queue length constraint being satisfied.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Scenario-based Distributed Model Predictive Control for freeway networks


    Beteiligte:
    Shuai Liu (Autor:in) / Sadowska, Anna (Autor:in) / Hellendoorn, Hans (Autor:in) / De Schutter, Bart (Autor:in)


    Erscheinungsdatum :

    01.11.2016


    Format / Umfang :

    613306 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch