This paper introduces a novel numerical approach to achieving smooth lane-change trajectories in autonomous driving scenarios. Our trajectory generation approach leverages particle swarm optimization (PSO) techniques, incorporating Neural Network (NN) predictions for trajectory refinement. The generation of smooth and dynamically feasible trajectories for the lane change maneuver is facilitated by combining polynomial curve fitting with particle propagation, which can account for vehicle dynamics. The proposed planning algorithm is capable of determining feasible trajectories with real-time computation capability. We conduct comparative analyses with two baseline methods for lane changing, involving analytic solutions and heuristic techniques in numerical simulations. The simulation results validate the efficacy and effectiveness of our proposed approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Efficient and Interaction-Aware Trajectory Planning for Autonomous Vehicles with Particle Swarm Optimization


    Beteiligte:
    Song, Lin (Autor:in) / Isele, David (Autor:in) / Hovakimyan, Naira (Autor:in) / Bae, Sangjae (Autor:in)


    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    1785512 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    UAV Swarm Trajectory Planning Based on a Novel Particle Swarm Optimization

    Luo, Jing / Liu, Jie / Liang, QianChao | British Library Conference Proceedings | 2022


    UAV Swarm Trajectory Planning Based on a Novel Particle Swarm Optimization

    Luo, Jing / Liu, Jie / Liang, QianChao | Springer Verlag | 2022


    UAV Swarm Trajectory Planning Based on a Novel Particle Swarm Optimization

    Luo, Jing / Liu, Jie / Liang, QianChao | TIBKAT | 2022