In this paper we consider the images taken from pairs of parabolic catadioptric cameras separated by discrete motions. Despite the nonlinearity of the projection model, the epipolar geometry arising from such a system, like the perspective case, can be encoded in a bilinear form, the catadioptric fundamental matrix. We show that all such matrices have equal Lorentzian singular values, and they define a nine-dimensional manifold in the space of 4 /spl times/ 4 matrices. Furthermore, this manifold can be identified with a quotient of two Lie groups. We present a method to estimate a matrix in this space, so as to obtain an estimate of the motion. We show that the estimation procedures are robust to modest deviations from the ideal assumptions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Mirrors in motion: epipolar geometry and motion estimation


    Beteiligte:
    Geyer, (Autor:in) / Daniilidis, (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    734365 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Mirrors in Motion: Epipolar Geometry and Motion Estimation

    Geyer, C. / Daniilidis, K. / IEEE | British Library Conference Proceedings | 2003


    3D Motion Recovery via Affine Epipolar Geometry

    Shapiro, L. S. / Zisserman, A. / Brady, M. | British Library Online Contents | 1995


    Improving accuracy for Ego vehicle motion estimation using epipolar geometry

    Nedevschi, Sergiu / Golban, Catalin / Mitran, Cosmin | IEEE | 2009



    Real-Time Estimation of Head Motion Using Weak Perspective Epipolar Geometry

    Otsuka, T. / Ohya, J. | British Library Conference Proceedings | 1998