Although autonomous driving is expected to pave the way for the future of transportation, it is often met with resistance. One of the reasons for this may be that, as of this writing, autonomous driving still cannot meet the individual needs of people. Furthermore, the unfamiliarity and discomfort when riding in an autonomous vehicle can cause drivers to feel stressed and distrustful of the vehicle. To this end, we propose an Emotion Preference Style Adaptation (EPSA) framework. The framework can analyze and determine a driver’s driving preferences from the emotion which is recognized from their EEG signals. And then it will adapt the style of the vehicle’s driving behavior to suit the driver’s preference.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Towards Personalized Autonomous Driving: An Emotion Preference Style Adaptation Framework


    Beteiligte:
    Ling, Jiali (Autor:in) / Li, Jialong (Autor:in) / Tei, Kenji (Autor:in) / Honiden, Shinichi (Autor:in)


    Erscheinungsdatum :

    01.12.2021


    Format / Umfang :

    1071575 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    An Intention-aware and Online Driving Style Estimation Based Personalized Autonomous Driving Strategy

    Sun, Bohua / Deng, Weiwen / Wu, Jian et al. | Springer Verlag | 2020



    GROUP DRIVING STYLE LEARNING FRAMEWORK FOR AUTONOMOUS VEHICLES

    JIANG YIFEI / LI DONG / TAO JIAMING et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Group driving style learning framework for autonomous vehicles

    JIANG YIFEI / LI DONG / TAO JIAMING et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    GROUP DRIVING STYLE LEARNING FRAMEWORK FOR AUTONOMOUS VEHICLES

    JIANG YIFEI / LI DONG / TAO JIAMING et al. | Europäisches Patentamt | 2018

    Freier Zugriff