While the common scenario nowadays in social networks is the proliferation of offensive language, the focus of attention in this work is the identification of constructive online comments. In order to automatically identify constructive online comments we implement both traditional and deep learning models based on the use of sparse and dense vector semantics. We evaluate these classifiers on a recently created constructive comments corpus comprised of 12,000 annotated news comments, intended to improve the quality of online discussions. The obtained results show how our model based on learning embeddings (dense vectors) is able to match the performance of complicated architectures like recurrent and convolutional neural networks.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Representation Learning for Constructive Comments Classification


    Beteiligte:
    Uribe, Diego (Autor:in) / Cuan, Enrique (Autor:in) / Urquizo, Elisa (Autor:in)


    Erscheinungsdatum :

    01.11.2020


    Format / Umfang :

    101745 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    The regulation of constructive learning processes

    Vermunt, J.D. | Online Contents | 1998


    Constructive Criticism

    Emerald Group Publishing | 1956



    Constructive qualification testing

    Garon, R.J. | Engineering Index Backfile | 1955