In a vision-aided autonomous system, it is crucial to have a consistent covariance matrix of the navigation solution. Overconfidence in covariance could lead to significant deviation of the navigation solution and failures of autonomous missions, especially in a global positioning system-denied environment. Consistency of a map-based vision-aided navigation system is investigated in this paper. As has been shown in numerous previous works, the traditional extended Kalman filter (EKF) approach to navigation produces significantly inconsistent (overconfident) covariance estimates. Covariance intersection and adjusted EKF approaches can both help to resolve the overconfidence problem. We present both simulation-based and real-world results of each of these approaches and investigate the consistency of their solutions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Conservative Uncertainty Estimation in Map-Based Vision-Aided Navigation


    Beteiligte:
    Zhen Zhu (Autor:in) / Taylor, Clark (Autor:in)


    Erscheinungsdatum :

    01.04.2017


    Format / Umfang :

    759864 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Conservative Uncertainty Estimation in Map-Based Vision-Aided Navigation

    Zhu, Zhen / Taylor, Clark | British Library Conference Proceedings | 2016


    VISION-AIDED AERIAL NAVIGATION

    MA YUNQIAN | Europäisches Patentamt | 2018

    Freier Zugriff

    Vision-aided aerial navigation

    MA YUNQIAN | Europäisches Patentamt | 2020

    Freier Zugriff

    VISION-AIDED AERIAL NAVIGATION

    MA YUNQIAN | Europäisches Patentamt | 2017

    Freier Zugriff

    Vision-aided aerial navigation

    MA YUNQIAN | Europäisches Patentamt | 2018

    Freier Zugriff