In the era of the Internet of Everything, accurate vehicle location information in the transportation system is particularly important. In order to obtain accurate vehicle position, after acquiring basic data through GPS or other hardware collection, a series of data processing can be performed, which can improve the accuracy of vehicle positioning to a certain extent. In this paper, Cubature Kalman Filter (CKF) algorithm is used to predict the position of the vehicle through the model and then fuse the collected data to improve the accuracy of vehicle position. And the combination of adaptive Interactive Multi-mode algorithm and Cubature Kalman Filter algorithm can adapt to various maneuvering states of vehicles. Simulation experiments show that the positioning accuracy of the Interactive Multi-mode Cubature Kalman Filter (Imm-CKF) algorithm can be improved by about 20% compared to the Cubature Kalman Filter algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Application Research of Cubature Kalman Filter in Vehicle Positioning


    Beteiligte:
    Bian, Yuegen (Autor:in) / Sun, Miao (Autor:in)


    Erscheinungsdatum :

    14.10.2020


    Format / Umfang :

    134734 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A seventh‐degree cubature kalman filter

    Meng, Dong / Miao, Lingjuan / Shao, Haijun et al. | British Library Online Contents | 2018


    Augmented Robust Cubature Kalman Filter Applied in Re-Entry Vehicle Tracking

    Li, Shoupeng / Wang, Pu / Mu, Rongjun et al. | IEEE | 2021



    On a new higher degree Cubature Kalman filter

    Huang, Xiangyuan / Tang, Xiaqing / Wu, Meng | IEEE | 2014