Semantics based image retrieval techniques show a promising direction to the development of CBIR systems. To design such systems, semantics modeling is one of the most difficult tasks. This paper aims to develop a semantics modeling approach using neural networks. In our work, a neural network is utilized to memorize the semantic patterns within the images. An intelligent image retrieval system is designed based on this model. User's relevance feedback is used for enhancing the retrieval performance. Experimental results from the prototype system demonstrate the effectiveness of the proposed approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Semantics modeling based image retrieval system using neural networks


    Beteiligte:
    Xiaohang Ma, (Autor:in) / Dianhui Wang, (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    213585 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Semantics Modeling Based Image Retrieval System using Neural Networks

    Ma, X. / Wang, D. | British Library Conference Proceedings | 2005



    Learning Semantics in Content Based Image Retrieval

    Zhang, H.-J. / IEEE | British Library Conference Proceedings | 2003


    Cross-modal domain adaptation for text-based regularization of image semantics in image retrieval systems

    Costa Pereira, J. / Vasconcelos, N. | British Library Online Contents | 2014


    New query refinement and semantics integrated image retrieval system with semiautomatic annotation scheme

    Zhu, X. / Zhang, H. / Wenyin, L. et al. | British Library Online Contents | 2001