Accurately predicting bus bunching during the operation phase can pave the way to improving transit service quality. This paper proposes a Long Short-Term Memory (LSTM) neural network model for predicting bus headway at downstream stops based on Automatic Fare Collection (AFC) and Global Positioning System (GPS) data of buses at upstream stops. Then bus bunching can be forecasted through the predicted headway. The LSTM model incorporates an attention mechanism to focus its “memory” function on capturing crucial information that influences headway prediction. The proposed method, validated on a real-world bus route, can accurately identify 89 % of bus bunching events with the lowest prediction error compared to other well-established algorithms.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Headway-Based Bus Bunching Prediction Using LSTM with Attention


    Beteiligte:
    Jiao, Jie (Autor:in) / Shen, Pengtao (Autor:in) / Zhang, Yong (Autor:in)


    Erscheinungsdatum :

    28.10.2023


    Format / Umfang :

    1784988 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch