We present a robust solution for data reduction in array processing. The purpose is to reduce the computation and improve the performance of applied signal processing algorithms by mapping the data into a lower dimension beamspace (BS) through a transformation. Nulls steering to interference are incorporated into a transformation using the subspace projection technique, and the BS spatial spectrum estimation accuracy is evaluated and maximized with a measure. The derived transformation tries to preserve the full-dimension Cramer-Rao bounds (CRBs) for the parameters of interest while rejecting undesired signals effectively. When compared with an optimal method and an adaptive approach, simulation results show that significant improvements are obtained in terms of BS direction-of-arrival (DOA) estimation root-mean-squared error (RMSE), bias, and resolution probability.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Dimension reduction for array processing with robust interference cancellation


    Beteiligte:
    Minghui Li (Autor:in) / Yilong Lu (Autor:in)


    Erscheinungsdatum :

    01.01.2006


    Format / Umfang :

    1277872 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch