In a road vehicle, the interaction forces between tire and road are strongly influenced by the longitudinal slip ratio. This kinematic quantity, therefore, represents one of the most important in the study of vehicle dynamics. The real-time knowledge of this quantity can allow the estimation of the interaction forces and the development of control systems to improve safety and handling. In particular, Anti-lock Braking Systems (ABS) and Traction Control Systems (TCS). Direct measurements of this quantity would require the insertion of sensors inside the tire, with consequent manufacturing complexity and increased costs. This paper proposes an estimate of the longitudinal slip ratio based on other easily measurable or estimable quantities. This estimator makes use of Neural Networks and is based on preliminary physical considerations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Learning for the Estimation of the Longitudinal Slip Ratio


    Beteiligte:
    Marotta, Raffaele (Autor:in) / Ivanov, Valentin (Autor:in) / Strano, Salvatore (Autor:in) / Terzo, Mario (Autor:in) / Tordela, Ciro (Autor:in)


    Erscheinungsdatum :

    28.06.2023


    Format / Umfang :

    1381232 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Slip ratio estimation device and slip ratio estimation method

    KATO MASAHIRO | Europäisches Patentamt | 2016

    Freier Zugriff

    SLIP RATIO ESTIMATION DEVICE AND SLIP RATIO ESTIMATION METHOD

    KATO MASAHIRO | Europäisches Patentamt | 2015

    Freier Zugriff

    SLIP RATIO ESTIMATION DEVICE AND SLIP RATIO ESTIMATION METHOD

    KATO MASAHIRO | Europäisches Patentamt | 2015

    Freier Zugriff

    Longitudinal Wheel Slip Estimation

    Savaresi, Sergio M. / Tanelli, Mara | Springer Verlag | 2010