In this correspondence we prove two interesting properties of the fast maximum likelihood (FML) covariance matrix estimator proposed in [1] under the assumption of zero-mean complex circular Gaussian training data sharing the same covariance matrix. The new properties represent optimality claims regardless of the statistical characterization of the data and, in particular, of the multivariate Gaussian assumption for the observables. The optimality is proved with respect to two cost functions involving either the Frobenius or the spectral norm of an Hermitian matrix.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimality Claims for the FML Covariance Estimator with respect to Two Matrix Norms


    Beteiligte:
    Aubry, A. (Autor:in) / De Maio, A. (Autor:in) / Carotenuto, V. (Autor:in)


    Erscheinungsdatum :

    01.07.2013


    Format / Umfang :

    137218 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A process noise covariance estimator

    Mason, Paul / Mook, D. | AIAA | 1994


    A Process Noise Covariance Estimator

    Mason, P. / Mook, D. / AIAA | British Library Conference Proceedings | 1994