The features based on Markov random field (MRF) models are usually sensitive to the rotation of image textures. The paper develops an anisotropic circular Gaussian MRF (ACGMRF) model for modeling rotated image textures and retrieving rotation-invariant texture features. To overcome the singularity problem of the least squares estimate (LSE) method, an approximate least squares estimate (ALSE) method is proposed to estimate the parameters of ACGMRF model. The rotation-invariant features can be obtained from the parameters of the ACGMRF model by the one-dimensional (1D) discrete Fourier transform (DFT). Significantly improved accuracy can be achieved by applying the rotation-invariant features to classify SAR (synthetic aperture radar) sea ice and Brodatz imagery.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Advanced Gaussian MRF rotation-invariant texture features for classification of remote sensing imagery


    Beteiligte:
    Huawu Deng, (Autor:in) / Clausi, D.A. (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    438872 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Advanced Gaussian MRF Rotation-Invariant Texture Features for Classification of Remote Sensing Imagery

    Deng, H. / Clausi, D. / IEEE | British Library Conference Proceedings | 2003


    Continuous rotation invariant features for gradient-based texture classification

    Hanbay, K. / Alpaslan, N. / Talu, M. F. et al. | British Library Online Contents | 2015


    Rotation Invariant Texture Classification using Covariance

    Madiraju, S. V. R. / Liu, C.-C. / IEEE; Signal Processing Society | British Library Conference Proceedings | 1994


    Rotation-invariant and scale-invariant Gabor features for texture image retrieval

    Han, J. / Ma, K. K. | British Library Online Contents | 2007


    Rotation invariant texture classification using multichannel filtering [4554-46]

    Manthalkar, R. / Biswas, P. K. / International Society for Optical Engineering | British Library Conference Proceedings | 2001