Autonomous mobile robots use vision sensors for navigation due to its ability to provide detailed information of the environment. Visual perception of an environment, is an important capability for mobile robots, so many efforts are leading the research community for such a fundamental and challenging task. An aspect to emphasize is that vision systems have to cope with uncertainty because sensors have noise and the previous knowledge is unclear or inaccurate. In this paper, we propose an uncertainty estimation model applied to an object detection system. The vision system is designed to recognize objects in usual human environments, working on a mobile robot. To calculate the uncertainty, we considerthe model accuracy of the system, the probability of detection after the prediction process and the empirical probability of detecting each object according to the distance. The experimental results demonstrate the feasibility and usefulness of incorporating uncertainty information into an object detection system. Finally, the results motivate us to continue improving the uncertaintymodel in order to use the information generated to strengthenmobile robot navigation systems, as well as for the developmentof a place categorization system.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adding Uncertainty to an Object Detection System for Mobile Robots


    Beteiligte:


    Erscheinungsdatum :

    01.09.2017


    Format / Umfang :

    896668 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Object-Related-Navigation for Mobile Robots

    Mueller, A. / Wuensche, H.J. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2012


    Object-related-navigation for mobile robots

    Mueller, Andre / Wuensche, Hans-Joachim | IEEE | 2012



    Object uncertainty detection

    VAN HEUKELOM MATTHEW / LEE TENCIA / WANG KAI ZHENYU | Europäisches Patentamt | 2022

    Freier Zugriff