This paper introduces a part-based two-stage pedestrian detector. The system finds pedestrian candidates with an AdaBoost cascade on Haar-like features. It then verifies each candidate using a part-based HOG-SVM doing first a regression and then a classification based on the estimated function output from the regression. It uses the Histogram of Oriented Gradients (HOG) computed on both the full, upper and lower body of the candidates, and uses these in the final verification. The system has been trained and tested on the INRIA dataset and performs better than similar previous work, which uses full-body verification.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Two-stage part-based pedestrian detection


    Beteiligte:


    Erscheinungsdatum :

    01.09.2012


    Format / Umfang :

    1760072 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Automatic categorization-based multi-stage pedestrian detection

    Yang, Kai / Du, Eliza Yingzi / Jiang, Pingge et al. | IEEE | 2012


    Part based pedestrian detection based on Logic inference

    Olmeda, Daniel / Armingol, Jose Maria / de la Escalera, Arturo | IEEE | 2013


    PEDESTRIAN DETECTION DEVICE, PEDESTRIAN DETECTION SYSTEM, AND PEDESTRIAN DETECTION METHOD

    TANIGUCHI SUGURU | Europäisches Patentamt | 2018

    Freier Zugriff

    Near-Infrared-Based Nighttime Pedestrian Detection Using Grouped Part Models

    Lee, Yi-Shu / Chan, Yi-Ming / Fu, Li-Chen et al. | IEEE | 2015


    Sequential Attention-Based Distinct Part Modeling for Balanced Pedestrian Detection

    Luo, Yan / Zhang, Chongyang / Lin, Weiyao et al. | IEEE | 2022