We propose a Bayesian approach to image hallucination. Given a generic low resolution image, we hallucinate a high resolution image using a set of training images. Our work is inspired by recent progress on natural image statistics that the priors of image primitives can be well represented by examples. Specifically, primal sketch priors (e.g., edges, ridges and corners) are constructed and used to enhance the quality of the hallucinated high resolution image. Moreover, a contour smoothness constraint enforces consistency of primitives in the hallucinated image by a Markov-chain based inference algorithm. A reconstruction constraint is also applied to further improve the quality of the hallucinated image. Experiments demonstrate that our approach can hallucinate high quality super-resolution images.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Image hallucination with primal sketch priors


    Beteiligte:
    Jian Sun, (Autor:in) / Nan-Ning Zheng, (Autor:in) / Hai Tao, (Autor:in) / Heung-Yeung Shum, (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    905076 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Image Hallucination with Primal Sketch Priors

    Sun, J. / Zheng, N.-N. / Tao, H. et al. | British Library Conference Proceedings | 2003


    Primal sketch: Integrating structure and texture

    Guo, C. e. / Zhu, S. C. / Wu, Y. N. | British Library Online Contents | 2007


    Adding scale to the primal sketch

    Saund, E. | IEEE | 1989


    Towards a Mathematical Theory of Primal Sketch and Sketchability

    Guo, C. / Zhu, S. / Wu, Y. et al. | British Library Conference Proceedings | 2003


    Towards a mathematical theory of primal sketch and sketchability

    Cheng-en Guo, / Song-Chun Zhu, / Ying Nian Wu, | IEEE | 2003