Autonomous mobility in rough terrain is key to enabling increased science data return from planetary rover missions. Current terrain sensing and path planning approaches can be used to avoid geometric hazards, such as rocks and steep slopes, but are unable to remotely identify and avoid non-geometric hazards, such as loose sand in which a rover may become entrenched. This paper proposes a self-supervised classification approach to learning the visual appearance of terrain classes which relies on vibration-based sensing of wheel-terrain interaction to identify these terrain classes. Experimental results from a four-wheeled rover in Mars analog terrain demonstrate the potential for this approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Self-Supervised Classification for Planetary Rover Terrain Sensing


    Beteiligte:


    Erscheinungsdatum :

    01.03.2007


    Format / Umfang :

    1602934 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Self-supervised terrain classification for planetary surface exploration rovers

    Brooks, C. A. / Iagnemma, K. | British Library Online Contents | 2012


    A Terrain Classification Method for Planetary Rover Utilizing Dynamic Texture

    Fujita, K. / Ichimura, N. / American Institute of Aeronautics and Astronautics; Conferderation of European Aerospace Societies | British Library Conference Proceedings | 2011



    Risk-aware planetary rover operation: Autonomous terrain classification and path planning

    Ono, Masahiro / Fuchs, Thoams J. / Steffy, Amanda et al. | IEEE | 2015


    Risk-Aware Planetary Rover Operation: Autonomous Terrain Classification and Path Planning

    Ono, Masahiro / Fuchs, Thoams J. / Steffy, Amanda et al. | NTRS | 2015