In this paper, background pixels mutation detection and Hu invariant moments based traffic signs segmentation are combined in traffic signs detection. Considering the gray histogram information in S space, it has good segmentation effects as a global threshold selection method, which can greatly reduce the processing time of the subsequent work. Then using moment invariant theory to extract standard images and seven Hu invariant moments of traffic signs, we contrast the eigenvalues with the suspected areas to establish a rapid and reliable traffic signs detection method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Background pixels mutation detection and Hu invariant moments based traffic signs detection on autonomous vehicles


    Beteiligte:
    Fu, Meng-yin (Autor:in) / Liu, Fang-yu (Autor:in) / Yang, Yi (Autor:in) / Wang, Mei-ling (Autor:in)


    Erscheinungsdatum :

    01.07.2014


    Format / Umfang :

    147477 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    LIDAR-based detection of traffic signs for navigation of autonomous vehicles

    MILLER DEREK THOMAS / ZHANG YU / YANG LIN | Europäisches Patentamt | 2023

    Freier Zugriff

    LIDAR-BASED DETECTION OF TRAFFIC SIGNS FOR NAVIGATION OF AUTONOMOUS VEHICLES

    MILLER DEREK THOMAS / ZHANG YU / YANG LIN | Europäisches Patentamt | 2020

    Freier Zugriff

    Smart Signs for Autonomous Vehicles

    DYER JOHN WESLEY / NEMEC PHILIP / NEWBY JOSHUA et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Smart Signs for Autonomous Vehicles

    DYER JOHN WESLEY / NEMEC PHILIP / NEWBY JOSHUA et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Smart signs for autonomous vehicles

    DYER JOHN WESLEY / NEMEC PHILIP / NEWBY JOSHUA et al. | Europäisches Patentamt | 2022

    Freier Zugriff