This work addresses the growing civilian applications of drone technology and the associated security risks, particularly with respect to public and air safety. To address these issues, we introduce an improved YOLOv11-DEC model for real-time detection of small-target unmanned aerial vehicles (UAVs) in complex environments. The model incorporates SBA, group normalisation, and detail-enhanced convolution, and integrates RepViT with EMA attention to increase feature representation and detection accuracy. Additionally, we developed a lightweight LSDECD detection head to maintain model size while preserving accuracy. Experiments on the DUT dataset show that YOLOv11-DEC outperforms baseline models such as YOLOv11, in terms of detection accuracy, offering an effective solution for UAV monitoring and defence systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    YOLOv11-DEC: An Improved YOLOv11 Model for UAV Detection in Complex Contexts


    Beteiligte:
    Song, Qiong (Autor:in) / Liu, Siwei (Autor:in) / Dai, Kaiheng (Autor:in) / Bai, Kun (Autor:in)


    Erscheinungsdatum :

    05.05.2025


    Format / Umfang :

    1506509 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    A Lightweight Anti-Unmanned Aerial Vehicle Detection Method Based on Improved YOLOv11

    Yunlong Gao / Yibing Xin / Huan Yang et al. | DOAJ | 2024

    Freier Zugriff


    Autonomous UAV Detection of Ochotona curzoniae Burrows with Enhanced YOLOv11

    Huimin Zhao / Linqi Jia / Yuankai Wang et al. | DOAJ | 2025

    Freier Zugriff