An original method for an automatic detection of contours in difficult images is proposed. This method is based on a tight cooperation between a multi-resolution neural network and a hidden Markov model-enhanced dynamic programming procedure. This new method is able to overcome the three major drawbacks of the "standard" active contours, initialization dependency, exclusive use of local information and occlusion sensitivity. The driving idea is to introduce high-order a priori information in each step of the system. An application to the automatic detection of the left ventricle in digital X-ray images is proposed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Automatic contour detection by encoding knowledge into active contour models


    Beteiligte:
    Gerard, O. (Autor:in) / Makram-Ebeid, S. (Autor:in)


    Erscheinungsdatum :

    01.01.1998


    Format / Umfang :

    1248162 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Automatic Contour Detection by Encoding Knowledge into Active Contour Models

    Gerard, O. / Makram-Ebeid, S. | British Library Conference Proceedings | 1998


    Modeling of Growth Via Active Contour Models

    Suriamoorthy, K. / Bovik, A. / University of Arizona et al. | British Library Conference Proceedings | 1998


    Gradient flows and geometric active contour models

    Kichenassamy, S. / Kumar, A. / Olver, P. et al. | IEEE | 1995


    Modeling of growth via active contour models

    Suriamoorthy, K.C. / Bovik, A.C. | IEEE | 1998


    Gradient Flows and Geometric Active Contour Models

    Kichenassamy, S. / Kumar, A. / Olver, P. et al. | British Library Conference Proceedings | 1995