To track an extended target presents challenges because the hypothesis of “one target means one detection” is not valid. Several approaches to extended target tracking (ETT) have been found promising, and in particular those involving random matrices have demonstrated their appeal. When targets are extended and the data is multistatic the issues are compounded; the random matrix model has continued appeal and offers a way to avoid enumerative data association. In this paper, a bistatic Bayesian ETT approach integrated into the random matrix framework is proposed. Furthermore, a closed-form solution for fusing multistatic radar system data into the same framework is presented. The proposed approaches are tested on both simulated data and real data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multistatic Bayesian extended target tracking


    Beteiligte:
    Vivone, Gemine (Autor:in) / Braca, Paolo (Autor:in) / Granstrom, Karl (Autor:in) / Willett, Peter (Autor:in)


    Erscheinungsdatum :

    01.12.2016


    Format / Umfang :

    1648756 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Adaptive waveform selection for multistatic target tracking

    Ngoc Nguyen / Dogancay, Kutluyil / Davis, Linda | IEEE | 2015


    Distributed tracking in multistatic sonar

    Coraluppi, S. / Carthel, C. | IEEE | 2005


    Adaptive Channel Assignment for Maneuvering Target Tracking in Multistatic Passive Radar

    Dai, Jinhui / Yan, Junkun / Pu, Wenqiang et al. | IEEE | 2023


    Widely Separated MIMO versus Multistatic Radars for Target Localization and Tracking

    Gorji, A. A. / Tharmarasa, R. / Kirubarajan, T. | IEEE | 2013