Standard but ad hoc measures such as sum-of-squared pixel differences (SSD) are often used when comparing and registering two images that have not been previously observed before. In this paper, we propose a framework to address the problem of learning a parametric feature distance measure to measure the dissimilarity between pairs of images. The method is based on optimizing the parameters of the distance measure in order to minimize correspondence classification errors on training data. Because the learning process involves relative (rather than absolute) visual content between image pairs, the learned distance measure may also be applied to other images with very different visual content. Results on matching classification with a wide variety of image content show that the learned feature distance measure clearly outperforms the standard measures of SSD, chamfer and Bhattacharyya histogram distances.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Learning feature distance measures for image correspondences


    Beteiligte:
    Chen, X. (Autor:in) / Cham, T.-J. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    395681 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Unsupervised Feature Learning for Dense Correspondences Across Scenes

    Zhang, C. / Shen, C. / Shen, T. | British Library Online Contents | 2016



    Coding of Image Feature Descriptors for Distributed Rate-efficient Visual Correspondences

    Yeo, C. / Ahammad, P. / Ramchandran, K. | British Library Online Contents | 2011


    Visual Servoing without Feature Correspondences Using Eigenspace Method

    Noguchi, T. / Deguchi, K. | British Library Online Contents | 1996