Handwritten text recognition is a problem rarely studied out of specific applications for which lexical knowledge can constrain the vocabulary to a limited one. In the case of handwritten text recognition, additional information can be exploited to characterize the specificity of the writing. This knowledge can help the recognition system to find coherent solutions from both the lexical and the morphological points of view. We present the principles of a handwritten text recognition system based on the online learning of the writer shapes. The proposed scheme is shown to improve the recognition rates on a sample of fifteen writings, unknown to the system.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Handwritten text recognition through writer adaptation


    Beteiligte:
    Nosary, A. (Autor:in) / Paquet, T. (Autor:in) / Heutte, L. (Autor:in) / Bensefia, A. (Autor:in)


    Erscheinungsdatum :

    01.01.2002


    Format / Umfang :

    400680 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Handwritten Text Recognition Through Writer Adaptation

    Nosary, A. / Paquet, T. / Heutte, L. et al. | British Library Conference Proceedings | 2002



    Automatic Handwriting Recognition and Writer Matching on Anthrax-Related Handwritten Mail

    Srihari, S. N. / Lee, S. | British Library Conference Proceedings | 2002


    Writer Identification Using Innovative Binarised Features of Handwritten Numerals

    Leedham, G. / Chachra, S. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2003


    Writer Adaptation Techniques in Off-Line Cursive Word Recognition

    Vinciarelli, A. / Bengio, S. | British Library Conference Proceedings | 2002