Although transformer structure has become the defacto standard of the natural language processing task, it still has limited application in computer vision. In vision, attention is either combined with or replaces certain modules in a convolutional network, while keeping its overall framework intact. It proves that this reliance on CNNs is unnecessary for the pure transformer directly applied to image patch sequence can successfully classify the images. When large amounts of data are pre-trained and transmitted to multiple small and medium-sized image recognition benchmark (ImageNet, CIFAR-100, VTAB, etc.), the Vision Transformer (ViT) achieves remarkable results with less computational resources required than existing convolutional networks. Unlike the previous calculation that weighs attention, the model in this paper has been optimized, reducing the time complexity from O(n2) to O(n • logn), largely improving the model’s speed. Therefore, a new model is developed—Fast Vision Transformer (Fast VIT).


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fast Vision Transformer via Query Vector Decoupling


    Beteiligte:
    Sun, Donghao (Autor:in) / Liu, Jiashun (Autor:in) / Liu, Jiaxing (Autor:in) / Zhang, Zixuan (Autor:in)


    Erscheinungsdatum :

    20.10.2021


    Format / Umfang :

    1365557 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Decoupling and Vector Control of Induction Motor

    Jianrong, C. / Lie, Y. / Youbai, X. | British Library Online Contents | 2000


    Decoupling Recognition and Localization in CAD-Based Vision

    Dickinson, S. J. / Metaxas, D. / IEEE Computer Society; Technical Committee on Pattern Analysis and Machine Intelligence | British Library Conference Proceedings | 1994


    Motion estimation by decoupling rotation and translation in catadioptric vision

    Bazin, J. C. / Demonceaux, C. / Vasseur, P. et al. | British Library Online Contents | 2010


    AnchorPoint: Query Design for Transformer-Based 3D Object Detection and Tracking

    Liu, Hao / Ma, Yanni / Wang, Hanyun et al. | IEEE | 2023


    Omnidirectional decoupling annular vector tilt rotor aircraft and control method thereof

    ZHU XINNING / ZHENG XIANGMING / LU KAIJIE et al. | Europäisches Patentamt | 2024

    Freier Zugriff