In vehicular edge computing (VEC) networks, vehicle terminal (VT) typically offloads tasks to road side units (RSUs) equipped with edge servers to obtain service with low latency. However, the lack of global information and time-varying nature of VEC networks present challenges to make effective resource allocation decisions under long-term constraints. Motivated by this, we aim to investigate a dynamic resource allocation scheme with diverse tasks. We formulate an optimization problem to minimize average task delay under long-term constraints of energy consumption and system cost for cloud-edge collaboration offloading. For the coupling of resource allocation decisions between different time slots, we propose a Lyapunov online resource allocation (LORA) algorithm. LORA transforms the formulated problem into a problem of minimizing the upper bound of the drift-plus-penalty function. We then decompose the latter into multiple subproblems and provide the corresponding algorithms for solving them separately. Experimental results show that our proposed LORA reduces energy consumption and system cost by 10.1% and 4.2%, respectively, compared to DO, and reduces average task delay by 15.1% compared to ECSCO.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Dynamic Resource Allocation for Cloud-Edge Collaboration Offloading in VEC Networks With Diverse Tasks


    Beteiligte:
    Geng, Jingwei (Autor:in) / Qin, Zaiming (Autor:in) / Jin, Shunfu (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.12.2024


    Format / Umfang :

    6856787 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Energy Minimization Task Offloading Mechanism with Edge-Cloud Collaboration in IoT Networks

    Zhang, Xunzheng / Zhang, Haixia / Zhou, Xiaotian et al. | IEEE | 2021


    Joint Partial Offloading and Resource Allocation for Vehicular Federated Learning Tasks

    Ma, Guifu / Hu, Manjiang / Wang, Xiaowei et al. | IEEE | 2024


    Multithread Optimal Offloading Strategy Based on Cloud and Edge Collaboration

    Zhu, Yifan / Wang, Zhaoyang / Han, Zhuo et al. | IEEE | 2020


    V2V-Based Task Offloading and Resource Allocation in Vehicular Edge Computing Networks

    He, Junjin / Wang, Yujie / Du, Xin et al. | ArXiv | 2021

    Freier Zugriff