Reliable ego-motion estimation is a crucial technology for autonomous vehicles. While progress has been made in deep odometry systems utilizing cameras and LiDAR, there is significant potential in exploring 4-D radar odometry due to radar's robustness against adverse weather and lighting conditions. Nevertheless, radar-based odometry faces several challenges: 1) radar point clouds are sparser and noisier than LiDAR point clouds; 2) radar points belonging to moving objects will cause interference to deep odometry; 3) the dependence on massive labeled data limits the practical application of supervised learning-based radar odometry. To address these challenges, this work proposes a self-supervised 4-D radar odometry. Specifically, we employ a multi-scale approach to extract robust features from sparse point clouds. Besides introducing several traditional LiDAR-based loss functions, we design a novel velocity-aware loss based on radar characteristics to achieve a self-supervised radar odometry. Moreover, we develop a point confidence estimation module to reduce the interference of moving objects and noise. We conduct comprehensive experiments on a public dataset to demonstrate the advanced performance of our method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Self-supervised 4-D Radar Odometry for Autonomous Vehicles


    Beteiligte:
    Zhou, Huanyu (Autor:in) / Lu, Shouyi (Autor:in) / Zhuo, Guirong (Autor:in)


    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    3797145 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Radar Odometry for Autonomous Ground Vehicles: A Survey of Methods and Datasets

    Abu-Alrub, Nader J. / Rawashdeh, Nathir A. | IEEE | 2024


    Self-Supervised Depth Completion From Direct Visual-LiDAR Odometry in Autonomous Driving

    Song, Zhenbo / Lu, Jianfeng / Yao, Yazhou et al. | IEEE | 2022


    Visual odometry and mapping for Underwater Autonomous Vehicles

    Costa Botelho, Silvia Silva / Drews, Paulo / Oliveira, Gabriel Leivas et al. | Tema Archiv | 2009


    Fusing Optimal Odometry Calibration and Partial Visual Odometry via A Particle Filter for Autonomous Vehicles Navigation

    S.A. Ávila-Martínez / J.C. Martínez Romo / F.J. Luna Rosas et al. | BASE | 2021

    Freier Zugriff

    Self-supervised 3D keypoint learning for monocular visual odometry

    TANG JIEXIONG / AMBRUS RARES A / GUIZILINI VITOR et al. | Europäisches Patentamt | 2024

    Freier Zugriff