TNL (Tracking by Natural Language) aims to locate the target described by a natural language sentence in a video. Most existing TNL methods are typically composed of three modules: object grounding, object tracking, and switching module, and their performance is limited by the poor performance of the grounding and switching modules due to the complex backgrounds and inaccurate information stored in the memory. This paper presents a global-local framework to address these issues, which includes a prompt-guided grounding module, a trained local tracking module, and a memory-based switcher module. The prompt-guided grounding module uses noun prompts to guide the CLIP model in focusing more on target regions and aligning visual features semantically with linguistic features, avoiding being misled by distractors and background. The memory-based switch module stores historical information with higher-quality memory, allowing the model to make more accurate decisions based on reliable data, thus improving the overall performance. Experiments on TNL2K, LaSOT, and OTB-Lang demonstrate the effectiveness and generalizability of the proposed framework.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Boost Tracking by Natural Language With Prompt-Guided Grounding


    Beteiligte:
    Li, Hengyou (Autor:in) / Liu, Xinyan (Autor:in) / Li, Guorong (Autor:in) / Wang, Shuhui (Autor:in) / Qing, Laiyun (Autor:in) / Huang, Qingming (Autor:in)


    Erscheinungsdatum :

    01.01.2025


    Format / Umfang :

    2524134 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Vision-Language Tracking With CLIP and Interactive Prompt Learning

    Zhu, Hong / Lu, Qingyang / Xue, Lei et al. | IEEE | 2025



    Wire-guided trolleys boost engine productivity

    Scott,D. / Fiat,IT | Kraftfahrwesen | 1982


    Multi-Level Query Interaction for Temporal Language Grounding

    Tang, Haoyu / Zhu, Jihua / Wang, Lin et al. | IEEE | 2022