Currently, IT solutions that detect situations of vehicle congestion use isolated technologies, which are not part of an ecosystem that manages them together, made it difficult to gear the tools used by affecting the operation of the solutions.This study aims to present a Big Data architecture proposal for the implementation of vehicle traffic detection software. The research is presented based on the base architecture established for Big Data systems, as well as established studies identifying the particular phases identified for the processing of vehicle traffic records collected in the city of Quito-Ecuador.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Big Data architecture proposal for vehicular traffic detection


    Beteiligte:


    Erscheinungsdatum :

    01.10.2020


    Format / Umfang :

    1712242 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Vehicular Traffic

    Rosini, Massimiliano Daniele | Springer Verlag | 2013


    Anomalous Data Detection in Vehicular Networks Using Traffic Flow Theory

    Ranaweera, Malith / Seneviratne, A. / Rey, David et al. | IEEE | 2019


    CARTIM: A proposal toward identification and minimization of vehicular traffic congestion for VANET

    Araujo, Guilherme B. / Queiroz, Matheus M. / Duarte-Figueiredo, Fatima de L. P. et al. | IEEE | 2014


    Vehicular control system with traffic lane detection

    SCHOFIELD KENNETH / LYNAM NIALL R | Europäisches Patentamt | 2022

    Freier Zugriff

    VEHICULAR CONTROL SYSTEM WITH TRAFFIC LANE DETECTION

    SCHOFIELD KENNETH / LYNAM NIALL R | Europäisches Patentamt | 2020

    Freier Zugriff