The article presents the cognitive radar architecture of Fraunhofer FHR based on a three-layer model of human cognitive performance. The approach is illustrated using examples for non-cooperative target identification and classification. On the skill based layer, a target-matched waveform design is presented and experimental results are shown. For the transition to the rule-based layer, convolutional neural networks are explained for the identification of air-targets and a novel auto-encoder for change detection is introduced. For rule-based behavior, a policy based decision making algorithm for NCTI waveform selection is explained, using CPOMDPs.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Cognitive Radar for Classification


    Beteiligte:
    Bruggenwirth, Stefan (Autor:in) / Warnke, Marcel (Autor:in) / Wagner, Simon (Autor:in) / Barth, Kilian (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.12.2019


    Format / Umfang :

    3722838 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Classification Framework for Correlated Sample Space in Cognitive Radar

    Laskar, Mostafizur Rahaman / Sen, Debarati | IEEE | 2019


    Deep learning cognitive radar for micro UAS detection and classification

    Mendis, Gihan J. / Jin Wei / Madanayake, Arjuna | IEEE | 2017


    Experiments with cognitive radar

    Smith, Graeme E. / Cammenga, Zach / Mitchell, Adam et al. | IEEE | 2016


    Deep Learning for Classification of Mini-UAVs Using Micro-Doppler Spectrograms in Cognitive Radar

    Huizing, Albert / Heiligers, Matijs / Dekker, Bastiaan et al. | IEEE | 2019


    Cognitive Radar Special Issue—Part 2

    Brueggenwirth, Stefan / Huizing, Albert / Charlish, Alexander | IEEE | 2020

    Freier Zugriff