Widely linear (WL) robust adaptive beamforming exhibits superior performance by effectively leveraging the additional noncircularity information. However, existing studies focus solely on the noncircular (NC) impinging interferences, often overlooking main-lobe interferences and suffering from high computational complexity. To tackle these challenges, this article introduces a generalized WL sparse reconstruction (GWLSR) beamforming framework that addresses the general scenario where the impinging interferences consist of mixed circular and NC signals from a sparse reconstruction perspective. The framework considers two variants, GWLSR$_{1}$ and GWLSR$_{2}$, to accommodate circular and NC signal of interest, respectively. Within this framework, we can estimate the power of a larger number of interferences in the general scenario, supported by a root finding-based approach for direction-of-arrival (DOA) and NC phase (NCP) estimation. We then reconstruct the conjugate augmented interference-plus-noise covariance by leveraging the estimated DOAs, NCPs, and power associated with the interferences. The proposed beamformers are computational efficient as all the involved procedures can be formulated using close-form expressions. In addition, they can effectively suppress main-lobe interferences. Simulation examples are provided to illustrate the advantages of the proposed beamformers.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Generalized Widely Linear Robust Adaptive Beamforming: A Sparse Reconstruction Perspective


    Beteiligte:
    Yue, Yaxing (Autor:in) / Zhang, Zongyu (Autor:in) / Shi, Zhiguo (Autor:in)


    Erscheinungsdatum :

    01.10.2024


    Format / Umfang :

    1188885 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch