Traffic signal control influences route choice in traffic networks, and may even determine whether a traffic system settles in equilibrium or destabilizes into oscillatory patterns. Ideally, a stable equilibrium flow pattern should result from the interaction between control and route choice on a long-term horizon. This paper proposes an iterative learning approach for designing signal controls able to attract the system to equilibrium in an acceptable convergence speed. The traffic assignment model and combined traffic assignment and control problem are first introduced. An iterative learning control (ILC) based signal control is formulated and a basic model inversion method is analyzed. To deal with the nonlinearity of traffic system, a Newton based ILC algorithm is applied. Test in an example network verifies the effectiveness of the ILC method in achieving stable equilibrium in the traffic system.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An iterative learning approach for signal control in urban traffic networks


    Beteiligte:
    Wei Huang (Autor:in) / Viti, Francesco (Autor:in) / Tampere, Chris M.J. (Autor:in)


    Erscheinungsdatum :

    01.10.2013


    Format / Umfang :

    725732 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    An iterative learning approach for anticipatory traffic signal control on urban networks

    Huang, Wei / Viti, Francesco / Tampère, Chris M.J. | Taylor & Francis Verlag | 2017


    Urban traffic signal control method based on accelerated iterative learning control

    YAN FEI / ZHANG XIAOHAN | Europäisches Patentamt | 2023

    Freier Zugriff


    Freeway Traffic Density Control Using Iterative Learning Control Approach

    Hou, Z. / Xu, J.-X. / IEEE | British Library Conference Proceedings | 2003


    Steady-State Signal Control for Urban Traffic Networks

    He, Zhonghe / Wang, Li / Li, Dai et al. | IEEE | 2015