Because of the different start times and the different update periods of local sensors, asynchronous measurements are ubiquitous in multisensor fusion systems. Therefore, it is urgent to solve the asynchronous track-to-track association (T2TA) problem. Time registration is widely used to align track to the unified time. However, the process of synchronization for track will lead to the accumulation of the estimation error. Some association methods without time registration need an additional point-by-point calculation of the tracks, which consumes a lot of time and can only focus on local track features. In light of the above problems, we propose an asynchronous T2TA method by using a heterogenous track graph (HTG-TA). The tracks in one scenario are represented by a heterogenous track graph to avoid time registration and traversal calculation. A multiscale heterogenous graphical neural network is used to focus on both local and global features. Experimental results demonstrate that HTG-TA can associate asynchronous tracks without time registration, surpass other association methods in both effectiveness and efficiency, and meet the demand of real-time association.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    HTG-TA: Heterogenous Track Graph for Asynchronous Track-to-Track Association


    Beteiligte:
    Xiong, Wei (Autor:in) / Xu, Pingliang (Autor:in) / Cui, Yaqi (Autor:in)


    Erscheinungsdatum :

    01.10.2024


    Format / Umfang :

    4346556 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Improving track continuity using track segment association

    Yeom, S.-W. / Kirubarajan, T. / Bar-Shalom, Y. | IEEE | 2003


    Clustering track pairs for multi-sensor track association

    IMRAN SYED ASIF | Europäisches Patentamt | 2024

    Freier Zugriff

    Multi-Target Track-to-Track Fusion Based on Permutation Matrix Track Association

    Lee, Kuan-Hui / Kanzawa, Yusuke / Derry, Matthew et al. | IEEE | 2018


    Track-to-Track Data Association using Mutual Information

    Hussein, Islam | British Library Conference Proceedings | 2015


    Clustering Track Pairs for Multi-Sensor Track Association

    IMRAN SYED ASIF | Europäisches Patentamt | 2023

    Freier Zugriff