Decision-making in automated driving is influenced both by objective traffic rules and subjective perceptions and goals of the driver. Thus, a suitable representation of the environment of the autonomous vehicle is required to model complex traffic situations and extract key features. To achieve this objective, this work uses an ontology-based situation interpretation (OBSI) to model traffic situations. The resulting semantic state representation is used to train models of vehicle-controlling agents using reinforcement learning. Based on our simulations, it can be shown that the semantic preprocessing of traffic situations significantly improves the agent's performance regarding safety and driving style.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Hybrid Tactical Decision-Making Approach in Automated Driving Combining Knowledge-Based Systems and Reinforcement Learning


    Beteiligte:


    Erscheinungsdatum :

    08.10.2022


    Format / Umfang :

    687435 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Combining Planning and Deep Reinforcement Learning in Tactical Decision Making for Autonomous Driving

    Hoel, Carl-Johan / Driggs-Campbell, Katherine / Wolff, Krister et al. | IEEE | 2020


    TACTICAL DECISION-MAKING IN AUTONOMOUS DRIVING BY REINFORCEMENT LEARNING WITH UNCERTAINTY ESTIMATION

    Hoel, Carl-Johan / Wolff, Krister / Laine, Leo | British Library Conference Proceedings | 2020




    Tactical Decision Making

    McKinney, D. / Flight Safety Foundation / International Federation of Airworthiness et al. | British Library Conference Proceedings | 2000