In today's world, the usage of vehicles has increased that leads to vehicle traffic congestion. In this scenario, it is difficult to detect and control the traffic flow using man power and it is a time consuming process. In our proposed system we apply convolutional neural network to identify the traffic based on 3 categories namely low, medium and heavy regions. In order to identify the congestion state, we use two models of convolutional neural network namely VGG16 and ResNet50. In both of the models we use optimiser algorithm as ‘Adam optimiser’. By analysing the number of vehicles moving in a road, we predict the traffic congestion. If there is heavy traffic congestion, then it will send an alert message to respective authorities. Hence the traffic will be cleared. Henceforth, Deep learning plays an important role in traffic management system.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Prediction of Traffic Congestion through Convolutional Neural Network


    Beteiligte:
    K, Gayathri (Autor:in) / B, Gopalakrishnan (Autor:in) / S, Renuga Devi (Autor:in)


    Erscheinungsdatum :

    09.10.2021


    Format / Umfang :

    894501 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Convolutional neural network for recognizing highway traffic congestion

    Cui, Hua / Yuan, Gege / Liu, Ni et al. | Taylor & Francis Verlag | 2020




    NEURAL NETWORK MODELS FOR TRAFFIC CONTROL AND CONGESTION PREDICTION

    Hobeika, Antoine G. | Taylor & Francis Verlag | 1995