Based on a geometric interpretation of the optic flow constraint equation, we propose a conditional probability on the spatio-temporal image gradient. We consistently derive a variational approach for the segmentation of the image domain into regions of homogeneous motion. The proposed energy functional extends the Mumford-Shah functional from gray value segmentation to motion segmentation. It depends on the spatio-temporal image gradient calculated from only two consecutive images of an image sequence. Moreover, it depends on motion vectors for a set of regions and a boundary separating these regions. In contrast to most alternative approaches, the problems of motion estimation and motion segmentation are jointly solved by minimizing a single functional. Numerical evaluation with both explicit and implicit (level set based) representations of the boundary shows the strengths and limitations of our approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A variational framework for image segmentation combining motion estimation and shape regularization


    Beteiligte:
    Cremers, D. (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    810339 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Multiscale Variational Approach to Simultaneous Image Regularization and Segmentation

    Petrovic, A. / Vandergheynst, P. / IEEE | British Library Conference Proceedings | 2003



    Statistical shape knowledge in variational motion segmentation

    Cremers, D. / Schnorr, C. | British Library Online Contents | 2003


    Diffusion-Snakes: Combining Statistical Shape Knowledge and Image Information in a Variational Framework

    Cremers, D. / Schnorr, C. / Weickert, J. et al. | British Library Conference Proceedings | 2001