In this paper, a new approach for pedestrian detection is presented. We design an ensemble of classifiers that employ different feature representation schemes of the pedestrian images: Laplacian EigenMaps, Gabor filters, and invariant local binary patterns. Each ensemble is obtained by varying the patterns used to train the classifiers and extracting from each image two feature vectors for each feature extraction method: one for the upper part of the image and one for the lower part of the image. A different radial basis function support vector machine (SVM) classifier is trained using each feature vector; finally, these classifiers are combined by the ldquosum rule.rdquo Experiments are performed on a large data set consisting of 4000 pedestrian and more than 25 000 nonpedestrian images captured in outdoor urban environments. Experimental results confirm that the different feature representations give complementary information, which has been exploited by fusion rules, and we have shown that our method outperforms the state-of-the-art approaches among pedestrian detectors.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Ensemble of Multiple Pedestrian Representations


    Beteiligte:
    Nanni, L. (Autor:in) / Lumini, A. (Autor:in)


    Erscheinungsdatum :

    01.06.2008


    Format / Umfang :

    549820 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Ensemble of Multiple Pedestrian Representations

    Nanni, L. | Online Contents | 2008


    The Elderly Pedestrian and Social Representations

    Anna, R. M. S. / Braga, M. G. C. | British Library Conference Proceedings | 2005


    CONCEPT-AWARE ENSEMBLE SYSTEM FOR PEDESTRIAN DETECTION

    Lin, H. / Kim, K. / Choi, K. et al. | British Library Conference Proceedings | 2014



    On Exploration of Classifier Ensemble Synergism in Pedestrian Detection

    Oliveira, L. / Nunes, U. / Peixoto, P. | IEEE | 2010