Image processing techniques and computer aided diagnosis (CAD) systems have proved to be effective for the improvement of radiologists' diagnosis. In this paper an automatic system detecting lung nodules from postero anterior chest radiographs is presented. The system extracts a set of candidate regions by applying to the radiograph three different and consecutive multi-scale schemes. The comparison of the results obtained with those presented in the literature show the efficacy of our multi-scale framework. Learning systems using as input different sets of features have been experimented for candidates classification, showing that support vector machines (SVMs) can be successfully applied for this task.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Lung nodules detection and classification


    Beteiligte:
    Campadelli, P. (Autor:in) / Casiraghi, E. (Autor:in) / Valentini, G. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    107697 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Lung Nodules Detection and Classification

    Campadelli, P. / Casiraghi, E. / Valentini, G. | British Library Conference Proceedings | 2005


    Convolutional Neural Network approach for the Classification and Recognition of Lung Nodules

    Bhat, Sachin / Shashikala, R / Kumar, Sandesh et al. | IEEE | 2020


    Automated detection of lung nodules in computed tomography images: a review

    Lee, S. L. / Kouzani, A. Z. / Hu, E. J. | British Library Online Contents | 2012


    Automated Detection of Nodules in The CT Lung Images using Multi-Modal Genetic Algorithm

    Dehmeshki, J. / Siddique, M. / Lin, X.-Y. et al. | British Library Conference Proceedings | 2003


    Automated detection of nodules in the CT lung images using multi-modal genetic algorithm

    Dehmeshki, J. / Siddique, M. / Xin-Yu Lin, et al. | IEEE | 2003