Risk estimation for the current traffic situation is crucial for safe autonomous driving systems. The computation of risk estimates however is always uncertain, especially if the behavior of traffic participants has to be taken into account. Besides risk estimation, knowledge about the future behavior of other traffic participants can be used for Adaptive Cruise Control Applications, helping to choose a driving strategy with more foresight, which is not only desirable under comfort aspects, but can also be used to reduce fuel consumption. In this publication we focus on highway scenarios, where possible behaviors consist of changes in acceleration and lane-change maneuvers. Based on this insight we present a novel approach for the prediction of future positions in highway scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A probabilistic long term prediction approach for highway scenarios


    Beteiligte:


    Erscheinungsdatum :

    01.10.2014


    Format / Umfang :

    425507 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Simulation-Based Reinforcement Learning Approach for Long-Term Maneuver Planning in Highway Traffic Scenarios

    Augustin, D. / Schucker, J. / Tschirner, J. et al. | British Library Conference Proceedings | 2019


    Probabilistic Long-Term Prediction for Autonomous Vehicles

    Hoermann, Stefan / Stumper, Daniel / Dietmayer, Klaus | British Library Conference Proceedings | 2017


    Long Term Traffic Prediction in Highway Using Parallel CNN

    Lim, Donghyun / Lee, Minhyeok / Seok, Junhee | IEEE | 2020


    Probabilistic long-term prediction for autonomous vehicles

    Hoermann, Stefan / Stumper, Daniel / Dietmayer, Klaus | IEEE | 2017


    Long-term path prediction in urban scenarios using circular distributions

    Coscia, Pasquale / Castaldo, Francesco / Palmieri, Francesco A.N. et al. | British Library Online Contents | 2018