The purpose of timing plan optimization is to decrease delay and increase the overall performance of transportation network. This paper presents an agent-based reinforcement learning framework to train optimization agents to take appropriate actions according to perceived traffic states. Neuro-Fuzzy Actor-Critic Reinforcement Learning (NFACRL) method is applied in isolated intersection control. The control agent gets knowledge of traffic states after the learning process and determines the optimal phase durations required to minimize vehicle delay at a given intersection.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Neuro-Fuzzy Actor Critic Reinforcement Learning for determination of optimal timing plans


    Beteiligte:
    Linsen Chong, (Autor:in) / Abbas, Montasir (Autor:in)


    Erscheinungsdatum :

    01.09.2010


    Format / Umfang :

    552748 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Actor-Critic reinforcement learning for optimal design of piping support constraint combinations

    Jong-Ho Ham / Jung-Eun An / Hee-Sung Lee et al. | DOAJ | 2022

    Freier Zugriff

    Actor-Critic Reinforcement Learning for Control With Stability Guarantee

    Han, M / Zhang, L / Wang, J et al. | BASE | 2020

    Freier Zugriff

    Multiagent Soft Actor–Critic for Traffic Light Timing

    Wu, Lan / Wu, Yuanming / Qiao, Cong et al. | ASCE | 2023