Herein the authors apply the stochastic approximation method of Kiefer and Wolfowitz to optimize learning rate selection for Generalized Relevance Learning Vector Quantization — Improved (GRLVQI) neural networks with application to Z-Wave cyber-physical device identification. Recent work on full factorial models for GRLVQI optimal settings has shown promise, but is computationally costly and not feasible for large datasets. Results using stochastic optimization illustrate show fast convergence to high classification rates.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Stochastic approximation for learning rate optimization for generalized relevance learning vector quantization


    Beteiligte:


    Erscheinungsdatum :

    01.06.2017


    Format / Umfang :

    421403 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A new technique for generalized learning vector quantization algorithm

    Shui-sheng, Z. / Wei-wei, W. / Li-hua, Z. | British Library Online Contents | 2006


    Learning Vector Quantization with Alternative Distance Criteria

    Sanchez, J. / Pla, F. / Ferri, F. et al. | British Library Conference Proceedings | 1999


    Behavior Learning of Autonomous Robots by Modified Learning Vector Quantization

    Kyu, S. M. / Murata, J. / Hirasawa, K. | British Library Online Contents | 2001


    Structural Identification Using Learning Vector Quantization Neural Network

    Kozukue, W. / Miyaji, H. | British Library Online Contents | 2001


    SAR ATR using learning vector quantization [3647-02]

    Marinelli, A. M. P. / Kaplan, L. M. / Nasrabadi, N. M. et al. | British Library Conference Proceedings | 1999