Drivers’ human factors account for a large proportion of traffic accidents, and effective monitoring and real-time warning of fatigue and distracted driving are becoming more and more important. In this project, we provide a detailed overview of the problems and solutions of driver distraction and fatigue driving behavior monitoring methods, propose a YOLO-D2A algorithm to improve the accuracy and real-time driving behavior detection and maintain the optimal balance, and discuss the principles and methods in detail.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Dangerous Driving Action Detection and Recognition Technology


    Beteiligte:
    Dai, Yinhu (Autor:in) / Chen, Lei (Autor:in)


    Erscheinungsdatum :

    22.09.2023


    Format / Umfang :

    8257706 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    DANGEROUS DRIVING DETECTION DEVICE, DANGEROUS DRIVING DETECTION SYSTEM, DANGEROUS DRIVING DETECTION METHOD, AND STORAGE MEDIUM

    UEDA KENKI / TACHIBANA RYOSUKE / KAWABATA SHINICHIRO et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    DANGEROUS DRIVING DETECTION DEVICE, DANGEROUS DRIVING DETECTION SYSTEM, DANGEROUS DRIVING DETECTION METHOD, AND STORAGE MEDIUM

    UEDA KENKI / TACHIBANA RYOSUKE / KAWABATA SHINICHIRO et al. | Europäisches Patentamt | 2022

    Freier Zugriff


    DANGEROUS DRIVING DETERMINATION DEVICE, DANGEROUS DRIVING DETERMINATION METHOD, AND DANGEROUS DRIVING DETERMINATION PROGRAM

    SATO TAKAYUKI / KASUYA JUNICHI / NAKAMURA MASAHIRO et al. | Europäisches Patentamt | 2021

    Freier Zugriff