This paper is concerned with the collision-free cooperative path following (CPF) of networked underactuated maritime autonomous surface ships (MASSs), which are required to follow the Convention on the International Regulations for Pre-venting Collisions at Sea (COLREGs). Three primary COLREGS rules are considered in this paper: crossing, overtaking, and head-on situations. Firstly, a finite state machine is proposed based on the COLREGS to ascertain the encounter types between the own ship and the obstacle ship. Secondly, a switching heading decision is made by combining the Line-of-sight guidance and the constant avoidance angle method. Thirdly, cooperative guidance laws of desired velocities are developed to achieve both the CPF task and the COLREGs-compliant collision avoidance task. Finally, the effectiveness of the proposed COLREGs-compliant collision-free CPF method for multiple MASSs is validated by a simulation example.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    COLREGs-Compliant Collision-Free Cooperative Path Following for Multiple Maritime Autonomous Surface Ships


    Beteiligte:
    Feng, Hao (Autor:in) / Liu, Lu (Autor:in) / Xu, Yanping (Autor:in) / Wang, Dan (Autor:in) / Peng, Zhouhua (Autor:in)


    Erscheinungsdatum :

    13.10.2023


    Format / Umfang :

    514635 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    COLREGs-Compliant Collision Avoidance Method for Autonomous Ships via Deep Reinforcement Learning

    Wang, Leihao / Zhang, Xinyu / Wang, Chengbo et al. | TIBKAT | 2022


    COLREGs-Compliant Collision Avoidance Method for Autonomous Ships via Deep Reinforcement Learning

    Wang, Leihao / Zhang, Xinyu / Wang, Chengbo et al. | Springer Verlag | 2022


    COLREGs-Compliant Collision Avoidance Method for Autonomous Ships via Deep Reinforcement Learning

    Wang, Leihao / Zhang, Xinyu / Wang, Chengbo et al. | British Library Conference Proceedings | 2022



    COLREGS-compliant multi-ship collision avoidance via deep reinforcement learning

    Zhao, L. / Zhang, H. / Roh, M. I. et al. | TIBKAT | 2019