Social networking sites, like Twitter, have become the fastest means of communication. Millions of user tweet everyday discussing recent and important issues. Generally, the tweets are identical or similar in nature, which causes information overload on user's wall. This makes it difficult for the user to keep a track of all the events. The best solution for this is to summarize tweets that are similar, making it easier for user to understand and decide which tweets to follow. In this paper, we present a graph based clustering technique to generate summary for tweets that are similar or identical. In addition, the paper describes about the analytics performed on tweets. Analyzing tweets help in determining the popularity of a topic and in knowing user-interested topics. Twitter analytics is the key to measure the success of the tweets posted. The proposed system gives better results compared to other existing systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Tweet analytics and tweet summarization using graph mining


    Beteiligte:


    Erscheinungsdatum :

    01.04.2017


    Format / Umfang :

    709255 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Tweet, tweet

    Online Contents | 2010



    TWEET CREATION ASSISTANCE DEVICE

    NANBA TOSHIYUKI | Europäisches Patentamt | 2015

    Freier Zugriff

    User tracking using tweet segmentation and word

    Nimbarte, Mrudula / Thakare, Mrunali Omprakash | IEEE | 2017


    Fake Tweet Data Analysis using Machine Learning Methods

    Garg, Shivani / Dubey, Akshay | IEEE | 2021