Tuning or fine tuning of a tracker system turns out to be a hard job in practice. The main reason for this is that in a practical (surveillance) tracker system there are a lot of design parameters and a lot of competing requirements to be met. An algorithm to tune a tracker system automatically and at the same time obtain quantitative results in terms of the optimality of the solution is provided here. The theory of randomized algorithms is used to obtain probabilistic statements on the quality of the output of the tuning process. A simplified example illustrates how the developed theory is to be used.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Automatic track filter tuning by randomized algorithms


    Beteiligte:
    Boers, Y. (Autor:in) / Driessen, H. (Autor:in) / Lacle, N. (Autor:in)


    Erscheinungsdatum :

    01.10.2002


    Format / Umfang :

    159409 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Automated surveillance track filter tuning by randomized algorithms

    Boers, Y. / Driessen, H. / Lacle, N. | IEEE | 2002


    Automated Surveillance Track Filter Tuning By Randomized Algorithms

    Boers, Y. / Driessen, H. / International Society of Information Fusion et al. | British Library Conference Proceedings | 2002


    Optimal tuning of a Kalman filter using genetic algorithms

    Oshman, Yaakov / Shaviv, Ilan | AIAA | 2000