In this paper, we propose a new methodology for autonomous obstacle avoidance control using a bio-inspired optical flow estimation. The main difference with other methods is that we use an image model inspired by the human vision system to define the constraints in the optical flow formulation which includes a Hermite transform (HT) and a perceptive mask. We use a physical robot platform to test the control algorithm, where due to the structure of the chassis a forward, reverse and turn movements were defined. The robot has a RBG camera to capture images of the path and then calculate optical flow estimation. To define velocity and direction robot response we propose a fuzzy controller. Finally, we made some experiments to demonstrate the performance of control navigation, and how responds algorithm using HT and a perceptive mask.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Bio-inspired Optical Flow-based Autonomous Obstacle Avoidance Control




    Erscheinungsdatum :

    01.11.2019


    Format / Umfang :

    314319 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    OBSTACLE AVOIDANCE IN AUTONOMOUS VEHICLES

    COHEN OFIR / APPELMAN DINA | Europäisches Patentamt | 2023

    Freier Zugriff

    OBSTACLE AVOIDANCE IN AUTONOMOUS VEHICLES

    COHEN OFIR / APPELMAN DINA | Europäisches Patentamt | 2020

    Freier Zugriff

    Autonomous Navigation and Obstacle Avoidance

    Berger, Jesse / Carson, Cory / Towhidnejad, Massood et al. | AIAA | 2009


    Obstacle avoidance in autonomous vehicles

    COHEN OFIR / APPELMAN DINA | Europäisches Patentamt | 2024

    Freier Zugriff